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Abstract. We present a large-scale computer simulation of the prototypical three-dimensional
continuum percolation model consisting of a distribution of overlapping (spatially uncorrelated)
spheres. By using simulations of up to 105 particles and studying the finite-size scaling of
various effective percolation thresholds, we obtain a value ofpc = 0.2895±0.0005. This value
is significantly smaller than the values obtained for simulations that have been carried out using
smaller systems. Employing this value ofpc and systems of sizeL = 160 (relative to a sphere
of unit radius), we also obtain estimates of the critical exponentsν, β, andγ for the continuum
system and show that the values are different than those obtained using previous values ofpc.

1. Introduction

Continuum percolation studies have become increasingly common in the literature, as they
contain many of the same interesting mathematical properties of lattice percolation and
often are more realistic models of a variety of disordered materials [1–16]. Such materials
include porous media, composite materials, and colloids. Accordingly, it is important to
have a clear understanding of the behaviour of these systems, especially in the critical region
near the percolation threshold.

A simple class of continuum percolation models can be defined by considering a system
of d-dimensional hyperspheres of radiusa. In the prototypical model of ‘overlapping
spheres’ the hyperspheres are spatially uncorrelated. At low concentrations of the
overlapping hyperspheres (which we will heretofore just refer to as ‘spheres’), there is
little overlap between the spheres, except for the occasional two- or three-particle cluster.
A cluster is defined by particle overlap, so if two particle centres are within a distance
2a of each other, they belong to the same cluster. As the concentration of spheres
increases, the spheres begin to form larger and larger connected clusters until at some
critical concentration the largest cluster percolates in a manner completely analogous to
lattice percolation. Continuum percolation has also been studied in cases in which the
particles are spatially correlated, for example, hard-core [5, 7, 9] or attractive interactions
[3, 10].

Percolation systems are generally characterized by a power-law divergence of one or
more geometrical–statistical properties in the vicinity of the percolation threshold [17].
In general, most of the precisely known percolation thresholds and critical exponents are
associated with lattice percolation due, in part, to the fact that it has been studied more
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extensively, and many of the quantities that characterize lattice percolation can be solved
exactly. However, the lattice values are also much easier to simulate, due to the ordered
nature of their underlying structures. From a computational point of view, it is much easier
to associate the lattice site with entries in a matrix than to store the location of a list of
particles with arbitrary coordinates. The problem of determining bonds and connectivity is
also much easier to solve when dealing with a lattice system than a continuum system.

One important result which connects lattice and continuum percolation is that the
geometrical–statistical critical exponentsβ, γ , and ν appear to be the same for the two
systems due to universality [1, 2, 6]. This universality argument is the same one which
dictates that the exponents on different lattices with the same dimensionality should be
similar. Unfortunately, it is difficult to test whether or not the exponents for continuum and
lattice percolation are the same with any high degree of precision due to the difficulty in
determining the continuum exponents. The reason for this is that while lattice simulations
have been performed on lattices with more than 108 sites, most continuum simulations have
been concerned with systems of less than 105 particles, especially in three dimensions.
The primary numerical evidence for universality comes from two-dimensional examples,
and there is very little high-quality numerical data that would be needed to extract the
exponents for the three-dimensional continuum system.

In order to better determine the values of critical exponents for the continuum system,
one must first have a very precise value for the percolation thresholdpc in the system. This
is due to the fact that the scaling laws that describe the behaviour of some quantityX are
of the form

X ∝ |p − pc|b (1)

whereb is the critical exponent. Having an incorrect value ofpc, especially in the case
whereb is negative, can often lead to a serious misinterpretation of the data and an error
in the estimation ofb. In many cases, one can also scale the data not byp but by the size
of the systemL. However, this too involves knowing a precise value forpc.

In this letter, we propose to determinepc for the three-dimensional continuum
percolation system in a very precise and self-consistent way, and use this value to determine
precise values for some of the critical exponents associated with the system.

2. Definition of mathematical quantities

The correlation length exponentν can be defined by the relation

ξ(p) ∝ |p − pc|ν (2)

whereξ(p) is a correlation length which describes the typical radii of clusters in the system
for p < pc. For p > pc, ξ(p) represents a length scale over which the macroscopic
properties of the system are homogeneous. These definitions are primarily useful in
understanding the physical significance ofν, but are really not suited to a precise numerical
calculation of its value.

In practice,ν is more often calculated by considering the finite-size scaling of one
or more of the properties of the system. In our case, this is best done by studying the
value of theeffectivepercolation threshold for a system of linear sizeL, peff

c (L). For the
infinite system,pc is defined as the smallest volume fraction of spheres for which an infinite
cluster forms. For a finite system, however, we must use some other definition to calculate
peff

c (L). One common way is to require a certain fraction (often 0.5) of realizations tospan
the system in one or more directions. In this context, a cluster that spans the system is
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one which crosses the cluster completely from one side to an opposite side, without the
imposition of periodic boundary conditions. Another way is to require a certain fraction
to wrap from one side of a system to another. This is similar to spanning except that
the cluster must not only span, but the spanning ends must overlap if periodic boundary
conditions are imposed.

The precise value ofpeff
c (L) is usually calculated by plotting the spanning (or

wrapping) probability as a function ofp. The resulting curve has a sigmiodal shape
and the point at which the spanning probability crosses 0.5 can be obtained by fitting
a curve with a similar shape to the data, such as{1 + erf[(p − peff

c (L))/1(L)]}/2 or
{1+ tanh[(p−peff

c (L))/1(L)]}/2. Besides giving a very statistically accurate determination
of peff

c (L) for a system of sizeL, one also obtains the width of the percolation transition
1(L). This width scales as a function of system sizeL as

1(L) ∝ L1/ν . (3)

This often yields a very accurate value forν due to the statistical nature of the way that
1(L) is calculated.

Onceν is estimated, one can now estimatepc from the scaling relation

peff
c (L)− pc ∝ L−1/ν . (4)

Thus, if peff
c (L) is plotted againstL−1/ν , the result should be a straight line that intercepts

the y-axis at a value ofpc. This scaling is general enough that it should apply to any of
the definitions for effective percolation in a finite system.

The exponent that is related to the probability of a sphere belonging to the largest cluster
in the system isβ. It is most commonly defined as

P(p,∞) ∝ |p − pc|β (5)

whereP(p,∞) is the probability that a randomly chosen site belongs to the infinite (in
this case the largest) cluster in an infinitely large system. By applying finite-size scaling
techniques to equation (5), one can show that

P(pc, L) ∝ L−β/ν (6)

whereν is just the correlation length exponent defined above. Equation (6) generally allows
for a more precise numerical estimate ofβ due to the fact that the expression is not quite as
sensitive to the estimated value ofpc. From equation (6), it is easily shown that the fractal
dimensionD of the system atpc is just given by

D = d − β/ν. (7)

Finally, we will look at the mean cluster size exponentγ , which is defined by the
expression

S(p,∞) ∝ |p − pc|−γ (8)

whereS(p,L) is the mean cluster size of a realization of sizeL at volume fractionp. The
mean cluster size is defined by

S(p,L) =
∑

s s
2ns∑

s ns
(9)

wherens is the probability of a single particle belonging to a cluster ofs particles and
the sums are over all clusters forp < pc and exclude the largest, or ‘infinite’ cluster for
p > pc. In practice, one also applies finite-size scaling to equation (8) to obtain

S(pc, L) ∝ Lγ/ν. (10)

Like the case forβ, it is generally easier to obtain a precise estimate ofγ using equation (10)
than equation (8).
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Figure 1. Percolation probabilities as a function of volume fractionφ for both the spanning
(full curve) and wrapping (dashed curve) definitions of percolation for a system of sizeL = 32.

3. Computer simulation details

We have estimatedpc by taking systems of sizeL and generating a large number of
configurations for various values ofp. Next, the clusters were identified and then the
fraction of configurations containing at least one cluster that both spanned and wrapped in
at least one direction were tabulated for each value ofp. This resulted in two different
curves from whichpeff

c (L) and1(L) could be extracted. An example of such a set of
curves forL = 32 is shown in figure 1. The realizations at eachL were generated for
a wide enough range ofp to enclose both curves, in steps of1p = 5 × 10−4. The
number of realizations for each value ofp varied from 1000 forL = 32 to 200 for
L = 160. The values ofpeff

c (L) and1(L) were extracted by fitting each curve to the
function {1+erf[(p−peff

c (L))/1(L)]}/2. We found that the curve more closely resembled
that of the error function than the hyperbolic tangent, although fitting to the hyperbolic
tangent form did not change the results significantly, especially in the case ofpeff

c (L).
Once an accurate estimate ofpc was established,P(pc, L) and S(pc, L) were then

simulated for various values ofL where 326 L 6 160. These curves were then plotted on
a log–log plot and the values for the exponents was extracted using the value ofν obtained
from the width scaling of the curves.

4. Results

Figure 2 shows a log–log plot of1(L) againstL for the transition widths associated with the
different definitions of the effective percolation threshold. They are both basically parallel
to each other, which is to be expected since they should both have the same slope. The
slopes of both curves are 1.12± 0.01. This yields a values ofν = 0.89± 0.01, which is
very much in line with previous estimates.

The plots of thepeff
c (L) as a function ofL−1/ν are shown in figure 3. Most of the

different effective percolation definitions show a smooth approach to theL = ∞ value of



Letter to the Editor L589

100
L

100

∆−
1 (L

)

wrapping
spanning

Figure 2. Inverse transition width1(L) plotted as a function ofL for 32 6 L 6 160. The
straight lines are the best power-law fit forL > 40. Both lines have a slope of 1.12± 0.01,
indicating a value ofν = 0.89± 0.01.
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Figure 3. A plot of the different percolation probabilities as a function ofL−1/ν , with
accompanying linear fits to the data. Scaling laws predict that they should both intercept the
y-axis at the percolation threshold for the infinite system.

pc(L) from above, indicating that the larger sizes allow for greater connectivity. However,
the case in which spanning was required in at least one direction shows a somewhat
different behaviour. In this case, the percolation threshold rose slightly asL increased.
This behaviour is somewhat fortuitous as it allows the value ofpc to be more precisely
determined since there exist curves which bound it from above and below. From a linear
fit to the data in the figure, we estimate a value of 0.2895± 0.0005. The plots of the data
are also shown extrapolated toL−1/ν = 0.
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Figure 4. A plot of P(pc, L) for two different values ofpc. Forpc = 0.293, the figure diverges
from a power-law behaviour as the length scale of the system becomes larger, indicating non-
fractal behaviour. For our predicted value ofpc = 0.2895, the system shows a power-law
behaviour for allL. The line indicates a power-law fit to the data forL > 32.

Using the value ofpc determined above, the finite-size scaling data forβ is shown
in figure 4. The log–log plot shows a smoothly decreasing behaviour with a slope
corresponding to a value of−β/ν of −0.53± 0.01. Using the value ofν calculated
above, this gives an estimate ofβ = 0.472± 0.015. This value ofβ/ν is different than the
estimate given by Grassberger [18] of 0.474± 0.006 for lattice systems. In order to carry
out a more direct comparison of our results to similar lattice results, we performed nearly
identical finite-size scaling simulations in which the probability of belonging to the largest
cluster (using periodic boundary conditions) was plotted as a function of system sizeL for
8 6 L 6 384. For this simulation, a value ofpc = 0.311 605± 0.000 010 was used. This
data gives a value ofβ/ν = 0.485±0.005, more in line with the lattice value given in [18].

An estimate ofγ for the continuum system can now also be determined by looking at a
plot of the mean cluster size at concentrationpc as a function ofL. Because the simulation
is being done atpc, the largest or ‘infinite’ cluster is excluded from the sum. The resulting
plot is shown in figure 5. The slope of the power-law fit line is 1.94± 0.01 which gives
a value ofγ = 1.725± 0.015. This is somewhat smaller than the best estimate for lattice
percolation in three dimensions. However, this is to be expected given the value forβ, and
the fact thatβ, γ , andν are related by the relation

d = 2β/ν + γ /ν. (11)

It should be noted that the values calculated here forβ/ν and γ /ν have been calculated
independently of each other and satisfy equation (11) very well.

5. Discussion

The difference between the value ofβ/ν (and therefore the fractal dimensionD) calculated
in this continuum simulation and that calculated from lattice calculations differs by a small
but significant amount. Because of the high precision of the estimate and the large scale of
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Figure 5. A plot of S(pc, L) for pc = 0.2895. The line indicates a power-law fit to the data
for L > 32. The slope of the line indicates a value ofγ = 1.725± 0.015.

the simulations in this work, the difference between the value obtained here and in previous
works must be addressed. If we assume that universality arguments apply in this case, then
there should be no difference between the true value ofβ/ν for the two different systems.
If the difference is indeed a numerical one that is a result of the finite size of the simulation
and the interpretation of the data, then this needs to be better understood.

However, given the data presented here, one can also speculate on whether universality
holds in the three-dimensional case. It has already been shown numerically that universality
does not apply to the case of the transport exponents in three dimensions [8]. This difference
was seen because of the significant difference between the two exponents. Most of the
previous numerical data which were used to establish universality of the geometrical–
statistical exponents were of poor quality, and we would not have been able to see the
small difference between the two values. It should also be noted that we have shown here
that a small difference in the percolation threshold leads to a very different value of the
exponents. We obtained results similar to earlier works when we used larger values ofpc.

6. Conclusions

We have presented here a new and more precise value of the percolation threshold for
three-dimensional continuum percolation. By performing finite-size scaling calculations
using this new value, we have obtained estimates ofβ and γ for three-dimensional
continuum percolation. These values are different than previous lattice estimates, and we
have demonstrated that this difference is due to the fact that previous estimates ofpc were
too high. There is still a discrepancy between the value ofβ/ν measured here and the value
estimated from lattice simulations that more extensive simulations must address.
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